
Message Queue Formats
How does the message queue work?

Sep 14, 1988

This note describes the format of the shared memory Message Queue used for
communication with another processor on the VMEbus. It is implemented as a simple
one-way queue. Messages are placed in the queue by the VME System computer. The
other processor removes messages from the queue and interprets the command
accordingly.

Initialization
The VME System computer initializes co-processor message queues at reset time. One
of the standard system tables—table #15—contains pointers to the message queue for
each co-processor. This queue pointer table, indexed by co-processor number, has 8-
byte entries of the following format:

Message queue ptr Size

The message queue pointer is followed by the total queue size.

Each co-processor queue has the following format:

 IN OUT LIMIT START

 KEY INERR INCNT OUTCNTOUTERR

+$00

+$08

+$10

$10 $10 size $10

'MZ' 0 0 0 0

Queue body:

Queue header:

The values beneath the words in the queue header are the initialized values. The other
processor, when it recognizes the presence of the queue, examines the KEY field. If it
has the value 'MZ' it changes it to 'MQ' to signal to the VME system cpu that it has
“seen” the message queue. (Until this happens, the VME system cpu will not place
messages into the queue.)

Queue header
The IN pointer (offset from the start of the queue header) points to the next available
space in the queue for a message. It is altered by the VME system cpu as the last act
upon placing the new message into the queue, after first checking that there is room
available to hold the message.

The OUT pointer points to the next message to be removed from the queue by the
co-processor. It is altered after the co-processor has removed the message from the
queue. When the two pointer IN and OUT are equal, the queue is considered empty.
When they are unequal, there is at least one message in the queue.

The LIMIT word is the total size of the queue (in bytes). It is determined by the
contents of the VME system table directory.

The START word is the offset to the start of the queue body. When new entries
have reached LIMIT, the IN pointer circles back to START.

The KEY word has the value 'MZ' when the queue is initialized, and it is changed by
the co-processor to 'MQ' to signal that the queue has been recognized.

The INERR byte counts times when the VME system cpu tried to place an entry
into the queue, but found the queue full.

The OUTERR byte is incremented by the co-processor cpu when it encounters an
error in processing the messages it removes from the queue.

The INCNT word is incremented for each message successfully placed into the
queue.

The OUTCNT word is incremented by the co-processor when it successfully
removes a message from the queue.

Protocol
When the VME system cpu has a message to place into the queue, it checks to see that
the KEY word has the value 'MQ'. It then checks to see if the message can fit. If IN≥OUT,
it checks for space between IN and LIMIT; if there is not enough space there, a zero is
placed at the word pointed to by IN, and IN is reset to START. If either IN<OUT or IN
had to be reset to START, it checks for space between IN and OUT. If there is room, the
message is copied into the space, and the IN pointer is advanced by the message size.

The co-processor examines the queue at its convenience. (Note that the co-processor
had to have a priori knowledge of the location of the queue.) If the queue is not empty
(IN≠OUT), a message is removed from the queue. The word pointed to by OUT is
examined. If it is zero, OUT is reset to START, and if IN≠OUT, the word at START is
examined. When the co-processor has removed the message from the queue, it
advances the OUT pointer by the message size. It may then check to see if another
message is present. It is assumed that the co-processor will poll the message queue
often enough that the queue will not fill up. If it does, one will find the INERR count
nonzero.

Message format
Messages placed in the queue for a co-processor conform to a simple structure:

size

type

addit-
ional
data
words

Message Queue Formats p. 2

The first word is the message size, including the size word. The second word is
the message type. Additional message contents may follow the second word. So the
minimum message size is 4 bytes, in the case that no additional data is required for a
given type. The type word and any additional data have meaning only to the co-
processor, not the VME system.

Generic message setting
To send a general message to a co-processor in a VME system, one has only to send the
appropriate setting, specifying listype #40. The ident used with this listype supplies
the co-processor number (0,1,2…). The number of data bytes specified in the
setting—incremented by 2—becomes the size word of the message placed into the
selected queue. The first word of the setting data, then, is the type word of the
message. Additional data words follow the type word. Note that the VME system
does not care about the type word value.

Analog control
There is a format in use for analog control, in which an analog channel may be set
which results in a message sent to a co-processor queue.

size

type$00

index

data

In this case, the type value is given by a byte from the analog control field of the
analog descriptor for that channel. The index value is given by a word from the
analog control field. The data word is the word of setting data in the analog control
setting. The size value is therefore 8 bytes.

Message Queue Formats p. 3

